Comparison and Summary of Selected One-Dimensional Stream Water-Quality Models | | | | 1 | Hydraulics Com | putation Schemes | | | | · · · · · · · · · · · · · · · · · · · | Water-Quality Computation Schemes | | | | | | | | | | | | | | | rogram Utility | | | | | |--|---|---|---|---|--|---|---|--|---|---|---|---|---|--|---|--|--|---|---|---|--|---|--|--|--|--|--|--|--| | Hydraulic Stream System Discretization Coordinate Hydrodynamic Required Calibration Travel | | | | | | | | | Longitudinal | Water Quality | | Temperature Simulation | | Reaction Rate | | Biochemical | _ | | Aquatic Plants | Nitrification | Orthophosphate- | | Other Options or | | nput Data | | out Data | | W-4-1 D/ 1 | | Model Streeter- Phelos (USGS) Model | Regime One- dimensional steady- state streams* | 1)Main stem and branches 2)Reaches defined by inflows or stream changes 3)Computational elements Element length requirements do not increase discretization error.* Input data is by reach.* | Limits 1)50 reaches 2)950 elements 3)Flements 0.05-5 miles 4)50 total tributaries, waste inflows, and with- drawals | Scheme River miles (RM) from river mouth or arbitrar point down- stream of the study segment* | y averaged | Hydraulic Data Average velocity, depth, area, and top width* | Criteria
None* | Times Directly specified* or calculated from reach velocity and length* | <u>Dispersion</u> Neglected | Solution Analytical | Method None: directly specified* | Data Reach- averaged temperature | <u>Calibration</u> None | Temp. Adj. 0 BOD decay 1.047 Benthic DO demand 1.065 Reaeration, fecal and total coliform die-off 1.024' Benthic demand and net photo- synthetic production 1.0 All others 1.09 | 1)Reaeration* 2)BOD decay* 3)Nitrification* 4)Photosynthesis (mean daily) 5)Respiration 6)Benthic demand* | Oxygen Demand 1) 1st-order decay 2) Settling or scour of BOD described by the difference in two 1st-order reactions* | Reaeration 1st-order reaction* 1)Directly specified by reach* 2)Bennett-Rathbun eq.* 3)Langbien-Durum eq. 4)Velz method 5)0'Conner-Dobbins eq. 6)Tsivoglou-Wallace eq. 7)Padden-Gloyna eq. 8)Bansal eq. 9)Parkhurst-Pomeroy eq. | Benthic Demand Zero order or constant benthic uptake | and Animals Direct specification of chlorophyll aby reach and net daily photosynthetic DO production | Cycle 1)Nitrogenous BOD 1st-order decay* 2)Nitrogenous BOD zero-order decay (not mentioned in current documentation)** 3)Nitrification* a)Organic-N b)NH ₃ -N c)NO ₂ -N d)NO ₃ -N | Phosphorus 1) 1st-order uptake by chlorophyll a 2) 1st-order sedimentation or scour | Bacteria 1st-order die-off 1)Fecal* 2)Total* | Constituents 1) Anoxic conditions allength of zone b) BOD remaining 2) 3 arbitrary conservative substances* | Problems 1) Poor organization 2) Program does not check input data | 1)Reaches added
or deleted with
ease
2)Documentation
gives good
explanation or
input data | 1)Lengthy output—no option to shorten | Advantages 1) Results line printer plotted 2) Internal computations summarized | Model Advantages 1) Easy to calibrate with line printer plots 2) Direct input of travel time 3) Anaerobic zones estimated 4) Analytical solution, no numerical instabilities 5) Discretion errors are limited 6) Nitrogenous BOD can be modeled 7) Nitrification option is flexible | Model Disadvantages 1) No flow routing 2) No temperature simulation 3) No algae or biomass simulation 4) BOD scour is treated as a 1st- order process | | QUAL II
Model,
SEMCOG
Version | One- dimensional steady- state streams* with dynamic predic- tions from specifi- cation of diurnal meteoro- logical data* | 1)Main stem and multiple- branched tributaries 2)Reaches 3)Elements of equal length Reach length is governed by element length.* Input data is by reach.* | 1)500 elements 2)20 elements/ reach 3)15 junctions with tribu- taries 4)90 inflow and with- drawals 5)75 reaches | River miles
or kilo-
meters from
river
mouth or
arbitrary
point
downstream
of the
study
segment* | $\overline{1}$)u = aQ^b | 1)a, b, a, β, by reach* 2)Reach-averaged values of: a)bottom width b)side slopes c)channel slope d)Manning's n | Reach-
averaged
velocity
and depth* | Calculated
from reach
volumes
and
discharge* | Calculated
for straight,
infinitely
wide channels;
too low for
natural
channels | Implicit finite difference approximation with tri- diagonal matrix solution | 1)Directly
specified*
2)Heat
balance with
surface flux
only* | Temperature by reach* % cloudiness, dry-bulb and wet-bulb temperature, pressure, and wind speed* | None Wind-speed function* and dust- attenuation factor | Reaeration 1.0159
BOD
settling 1.0
All others 1.047 | Same as the
Streeter-
Phelps model | 1)1st-order
decay*
2)1st-order
settling* | 1)Directly specified by reach* 2)Churchill and others eq. 3)O'Conner-Dobbins eq. 4)Owens and others eq. 5)Langblen-Durum eq. 6)Thackston-Krenkel eq. 7)Tsivoglou-Wallace eq. 8)K ₂ = aQ ^b | Zero order
or constant
benthic uptake | Phytoplankton
as measured by
chlorophyll <u>a</u> | Components* 1)NH ₃ -N 2)NO ₂ -N 3)NO ₃ -N 4)Algae | 1)Algae uptake 2)Algae release 3)Zero-order benthos source/sink | 1st-order
die-off
1)Total* | 1)Flow augmentation 2)Treatment plant % BOD reduction specified 3)1 nonconservative substance 4)3 conservative substances* | 1)Some
algae
must
always be
entered
even when
algae
option is
not used** | 1)Excellent coding sheets- efficient and well organized 2)Reaches added or deleted with ease 3)Excellent explanation of input data by documentation 4)Good internal checks on data | 1)Results are not plotted and are not stored for post- processing plot pro- gram (a version does exist to do this) | 1)Concise, well-organ- ized output 2)Output lists input data and summarizes internal computations 3)Option available to suppress parts of output | 1)Model is well organized into sub- routines that can be easily modified 2)Model will cal- culate required flow augmentation given DO standards 3)Percent treat- ment for STP BOD can be specified 4)Phytoplankton can be modeled 5)Temperature can be modeled | 1)Organic nitrogen is not modeled explicitly 2)Calibration can be tedious 3)Discretization errors can be significant 4)DO saturation is not corrected for barometric pressure 5)Escape of NH ₃ to atmosphere is not addressed | | WYRRS
Model | One- dimensional steady- state*, gradually varied, or fully dynamic stream and reservoir networks | 1)Networks with flow reversals 2)Reaches 3)Nodes and elements Input data is by study segment. Three element lengths/reach can be specified.* | 1)100 elements* 2)105 nodes* 3)10 reaches* 4)10 inflows, withdrawals, and nonpoint source zones.* 5)41 cross- sections defined* | Same as
QUAL II,
some
distances
specified
in meters
and RK
(feet and
RM) and a
common
vertical
datum,
usually
mean sea
level* | Steady Options 1) Stage- discharge relationship 2) Backwater solution* Unsteady Options 1) St. Venant equation 2) Kinematic wave 3) Muskingum routing 4) Modified Puls routing | 1)Channel slope 2)Manning's n 3)x-section location 4)x-section coordinates or elev. vs. area, hvd. radius, top width 5)Channel encroachment and conveyance 6)Boundary conditions, downstream depth, elev. vs. discharge, and headwater discharge 7)Initial conditions, discharge, and water surface elevation | Water surface elevations, velocity and depth at discrete grid points* | Calculated
from reach
volumes and
discharge* | Included with
no details of
calculation | Finite difference approximation with matrix solution | 1)Directly
specified**
2)Heat balance
with surface
and bottom
flux*
3)Equilib-
rium
temperature
method** | Temperature by specified zones % cloudiness, dry-bulb and wet-bulb temperature, pressure, wind speed Equilibrium temperature coefficient, solar short-wave radiation, wind speed, vapor pressure | Wind-speed
function,
atmospheric-
turbidity
factor, and
bed heat
capacity
coefficient
Equilibrium
temperature
coefficient | Default Coliform die-off 1.04 Reaeration 1.022 BOD, NH3, NO2, detritus, sediment decay, nongrowth bio- activity and ecological and sediment constituents — see documentation | 5)Respiration
6)Detritus decay*
7)Sediment decay | 1)1st-order
decay of
dissolved BOD*
2)Particulate
BOD modeled
with organic
detritus*
5-day BOD is
specified as
input data | Same as QUAL II
except (8), and
direct input is
by element | 1)1st-order
organic
sediment decay
2)Benthic
plant respira-
tion and photo-
synthesis | 1)Benthic algae
2)Phytoplankton
3)Zooplankton
4)Aquatic insect
5)Fish
6)Benthic animal | documentation | 1)Biota release
or uptake
2)1st-order
detritus and
organic
sediment
decay and
release | 1st-order
die-off
1)Total | 1)Suspended sediment 2)Unit toxicity 3)PH-total alkalinity 4)CO ₂ cycle 5)Organic and inorganic sediment 6)Food chain | 1)No
coding
sheets
2)Documen-
tation is
vague in
some areas | 1)A common input
format is used
2)A wide range
of coefficients
are given
default values | 1)Difficult to calibrate stream hydraulics module with travel time 2)Nitrite is not listed in output | 1)Results can be written on files to transfer to other segments or other programs 2)The amount of printed data can be controlled | 1)A wide range of parameters can be modeled 2)Options are available for sensitivity analysis or exploring management alternatives 3)One-dimensional lakes can be included in a system 4)Suspended solids are modeled | 1)Some criteria for the choice of coefficients are vague or nonexistent in a few cases 2)Dynamic options are complex and make the program difficult to apply 3)Components in a cycle cannot be isolated 4)Data requirements are vague in a few cases | | MIT
Transient
Water
Quality
Network
Model | One- dimensional steady- state or dynamic flow in stream and estuary networks | 1)Networks with flow reversals 2)Nodes at junctions headwaters and controls 3)Reaches between nodes 4)Mesh spacing may vary for hydraulics and water quality. Rate coefficients specified by zones. | Depends on Courant stability criteria. User modifies program dimensions to fit the network modeled. Limits specified by user. | Feet from
upstream
end of
reach and
a common
vertical
datum,
usually
mean sea
level | Solution of one-dimensional continuity and momentum equations by implicit finite element method (Galerkin tech.) | 1)Slope 2)Manning's n 3)x-section location 4)x-section elev. vs. top width, area, wetted perimeter, and conveyance areas or pipe radius 5)Conveyance limits 6)Boundary conditions downstream depth, elev. vs. discharge, headwater discharge 7)Initial conditions, discharge, and water surface elevation | | Calculated
from reach
volumes and
discharge | Calculated as a function of an estuary dispersion parameter, longitudinal salinity gradient, Taylor's dispersion coefficient, and a factor for bends and irregularities | | 1)Directly
specified
2)Heat
balance
with
surface
flux only | Temperature by reach Air temperature, relative humidity, wind speed, net solar radiation, net atmospheric radiation, pressure | None
None | Default BOD decay 1.047 Reaeration 1.016 Coliform die-off 1.045 Nitrogen decay 1.065 | 1)Reaeration 2)BOD decay 3)Nitrification | 1) 1st-order
decay | $K_2 = C \frac{v^{0.6}HB}{H^{1.4}A}$ C specified by reach | Not
considered | 1)Phytoplankton
2)Zooplankton | Components 1)NH ₃ -N 2)NO ₂ -N 3)NO ₃ -N 4)Phytoplankton-N 5)Zooplankton-N 6)Particulate organic-N 7)Dissolved organic-N | Not considered | 1st-order
die-off
1)Fecal | 1)Salinity
coupled to
hydrodynamics | 1)Input
data is
not
fully
explained | 1)A common input
format is used
2)A wide range
of coefficients
are given
default values
3)Internal
checks on input
data is adequate | • | 1)Plotting
files are
created
for post-
processing | 1)Inflows and coefficients are easy to specify 2)Dispersion and several other model parameters can be controlled with specified data † | 1)Reaeration coefficient specification is severely limited 2)Program does not check for numerical convergence 3)Some criteria for the choice of model coefficients are vague † | ^{*} Option or capability verified in this evaluation. ^{**} Problem corrected in the most recent update. The Streeter-Phelps model was updated April 1981, NCASI updated the QUAL II model, SEMCOG version October 1980, and the HEC updated the WORRS model June 1981. [†] The MIT program was not fully evaluated.